Data Mapping using Combining Clustering Methods and C.45 Classification
نویسندگان
چکیده
School participation is measured by the Pure Participation Rate (APM). This study examines whether data mining can generate new knowledge. The Central Sumatra Statistic Agency (BPS-North Sumatra) provided secondary statistics on APM city/district (2011–2019) for elementary, junior high, high school, and PT. Data uses clustering (k-means) classification (Decision tree). cluster maps APM. Mapping clusters are utilized again categorization. Cluster value ranges indicate classification. C1 was cluster, C2 low cluster. RapidMiner aids processing. found 18 high-cluster (C1) cities 15 low-cluster (C2). Based results obtained, show that SMA PT become influential attributes in mapping area based Decision tree method, resulting 3 rules: if has a percentage 68,085% presentation 18,730%. (high cluster). Classification have yielded data.
منابع مشابه
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
data mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولUsing Grid-Clustering Methods in Data Classification
This paper examines grid-clustering method. Unlike the conventional methods, this method organizes the space surrounding the patterns. It uses a multidimensional grid data structure. The resulting block partitioning of the value space is clustered via a neighbor search. The mathematical description of the algorithms employed is given. Some case studies and ideas how to use the algorithms are de...
متن کاملImproving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملCombining Ontology Mapping Methods Using Bayesian Networks
Bayesian networks (BNs) can capture interdependencies among ontology mapping methods and thus possibly improve the way they are combined. Experiments on ontologies from the OAEI collection are shown, and the possibility of modelling explicit mapping patterns in combination with methods is discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRG international journal of electronics and communication engineering
سال: 2023
ISSN: ['2349-9184', '2348-8549']
DOI: https://doi.org/10.14445/23488549/ijece-v10i5p109